
Journal of Computational Physics 231 (2012) 7795–7814
Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Hierarchical fractional-step approximations and parallel kinetic Monte
Carlo algorithms

Giorgos Arampatzis a, Markos A. Katsoulakis b,⇑, Petr Plecháč c, Michela Taufer d, Lifan Xu d
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a b s t r a c t

We present a mathematical framework for constructing and analyzing parallel algorithms
for lattice kinetic Monte Carlo (KMC) simulations. The resulting algorithms have the capac-
ity to simulate a wide range of spatio-temporal scales in spatially distributed, non-equilib-
rium physiochemical processes with complex chemistry and transport micro-mechanisms.
Rather than focusing on constructing exactly the stochastic trajectories, our approach relies
on approximating the evolution of observables, such as density, coverage, correlations and
so on. More specifically, we develop a spatial domain decomposition of the Markov oper-
ator (generator) that describes the evolution of all observables according to the kinetic
Monte Carlo algorithm. This domain decomposition corresponds to a decomposition of
the Markov generator into a hierarchy of operators and can be tailored to specific hierar-
chical parallel architectures such as multi-core processors or clusters of Graphical Process-
ing Units (GPUs). Based on this operator decomposition, we formulate parallel Fractional
step kinetic Monte Carlo algorithms by employing the Trotter Theorem and its randomized
variants; these schemes, (a) are partially asynchronous on each fractional step time-win-
dow, and (b) are characterized by their communication schedule between processors.

The proposed mathematical framework allows us to rigorously justify the numerical and
statistical consistency of the proposed algorithms, showing the convergence of our approx-
imating schemes to the original serial KMC. The approach also provides a systematic
evaluation of different processor communicating schedules. We carry out a detailed bench-
marking of the parallel KMC schemes using available exact solutions, for example, in Ising-
type systems and we demonstrate the capabilities of the method to simulate complex
spatially distributed reactions at very large scales on GPUs. Finally, we discuss work load
balancing between processors and propose a re-balancing scheme based on probabilistic
mass transport methods.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Kinetic Monte Carlo algorithms have proved to be an important tool for the simulation of out-of-equilibrium, spatially
distributed processes. Such models arise in physiochemical applications ranging from materials science and catalysis, to
complex biological processes. Typically the simulated models involve chemistry and/or transport micro-mechanisms for
. All rights reserved.
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atoms and molecules, e.g., reactions, adsorption, desorption processes and diffusion on surfaces and through complex media,
[20,3,7]. Furthermore, mathematically similar mechanisms and corresponding kinetic Monte Carlo simulations arise in
agent-based, evolutionary games problems in epidemiology, ecology and traffic networks, [36].

The simulation of stochastic lattice systems using kinetic Monte Carlo (KMC) methods relies on the direct numerical
simulation of the underlying continuous time Markov Chain (CTMC). Since such stochastic processes are set on a lattice
(square, hexagonal, etc.) KN with N sites, they have a discrete, albeit high-dimensional, configuration space S and necessarily
have to be of jump type describing transitions between different configurations r 2 S. Mathematically, a CTMC is a
stochastic process St defined completely in terms of the local transition rates cðr;r0Þ which determine the updates (jumps)
from any current state St ¼ r to a (random) new state r0. In the context of the spatially distributed applications we are
interested here, the local transition rates will be denoted as
cðr;r0Þ ¼ cðx;x;rÞ; ð1Þ
which correspond to an updating micro-mechanism from a current configuration St ¼ r of the system to a new configuration
rx;x by performing an update in a neighborhood of each site x 2 KN . Here x is an index for all possible configurations Sx that
correspond to an update at a neighborhood Xx of the site x; we refer to Section 2 for specific examples.

Heuristically, the probability of a transition over an infinitesimal time interval dt is PðStþdt ¼ rx;x jSt ¼ rÞ ¼
cðx;x;rÞdt þ oðdtÞ. More precisely, the local transition rates (1) define the total rate
kðrÞ ¼
X
x2KN

X
x2Sx

cðx;x;rÞ; ð2Þ
which is the intensity of the exponential waiting time for a jump to be performed when the system is currently at the state r.
Once this exponential ‘‘clock’’ signals a jump, then the system transitions from the state r to a new configuration rx;x with
probability
pðr;rx;xÞ ¼ cðx;x;rÞ
kðrÞ : ð3Þ
Thus the full stochastic evolution is completely defined. On the other hand, the evolution of the entire system at any time t is
described by the transition probabilities Pðr; t; fÞ :¼ PðSt ¼ r jS0 ¼ fÞ,where f 2 S is any initial configuration. The transition
probabilities corresponding to the local rates (1) satisfy the master equation, [11],
@tPðr; t; fÞ :¼
X

r0 ;r0–r
cðr0;rÞPðr0; t; fÞ � kðrÞPðr; t; fÞ; ð4Þ
where Pðr;0; fÞ ¼ dðr� fÞ and dðr� fÞ ¼ 1 if r ¼ f and zero otherwise. The implementation of the KMC method is based on
efficient calculation of (2) and (3), and was first developed in [6], known as a BKL algorithm, for stochastic lattice Ising mod-
els, and in [12] known as Stochastic Simulation Algorithm (SSA) for reaction systems. However, as it is evident from formulas
(2) and (3), the algorithms are inherently serial as updates are done at one site x 2 KN at a time, while on the other hand the
calculation of (2) depends on information from the entire spatial domain KN . For these reasons it seems, at first glance, that
KMC algorithms cannot be parallelized easily.

However, Lubachevsky, in [23], proposed an asynchronous approach for parallel KMC simulation in the context of Ising
systems, in the sense that different processors simulate independently parts of the physical domain, while inconsistencies
at the boundaries are corrected with a series of suitable rollbacks. This method relies on uniformization of the total rates
over each processor, see also [14] for the use of uniformization in the parallel simulation of general CTMC. Thus the
approach yields a null-event algorithm, [20], which includes rejected moves over the entire domain of each processor.
Furthermore, Lubachevsky proposed a modification in order to incorporate the BKL algorithm in his parallelization
method, which was implemented and tested in [18]. This is a partially rejection-free (still asynchronous) algorithm,
where BKL-type rejection-free simulations are carried out in the interior of each processor, while uniform rates were used
at the boundary, reducing rejections over just the boundary set. However, in spite of the proposed improvements, these
asynchronous algorithms may still have a high number of rejections for boundary events and rollbacks, which
considerably reduce the parallel efficiency, [34]. Advancing processors in time in a synchronous manner over a fixed
time-window can provide a way to mitigate the excessive number of boundary inconsistencies between processors
and ensuing rejections and rollbacks in earlier methods. Such synchronous parallel KMC algorithms were proposed and
extensively studied in [9,34,26,29]. However, several costly global communications are required at each cycle between
all processors, whenever a boundary event occurs in any one of them, in order to avoid errors in the inter-processor
communication and rollbacks, [29].

As we will discuss further in this paper, many of the challenges in parallel KMC can be addressed by abandoning the ear-
lier perspective on creating a parallel KMC algorithm with the exactly same rates (and hence the generator and master equa-
tion) as the serial algorithm, see [25] for a discussion on exact algorithms. This is a very natural idea in the numerical analysis
of continuum models such as Ordinary and Partial Differential Equations (ODE/PDE). First, in [35] the authors propose an
approximate algorithm, in order to create a parallelization scheme for KMC. It was recently demonstrated [29,4], that this
method is very promising: boundary inconsistencies are resolved in a straightforward fashion, while there is an absence
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of global communications in contrast to synchronous relaxation schemes discussed earlier. Finally, we note that, among the
parallel algorithms tested in [29], the approximate algorithm had the highest parallel efficiency.

Here we develop a general mathematical framework for parallelizable approximations of the KMC algorithm. Our approach,
rather than focusing on constructing exactly stochastic trajectories in (2) and (3), relies on approximating the evolution of
observables f ¼ f ðrÞ. Observables of extended, spatially distributed systems such as coverage, surface roughness, correla-
tions, etc. are defined as continuous bounded functions defined on the configuration space, that is f 2 CbðSÞ, see for instance
(46). Typically in KMC we need to compute expected values of such observables, that is quantities such as
Fig. 1.
coordin
(b) Hier
uðf; tÞ :¼ Ef½f ðStÞ� ¼
X
r

f ðrÞPðr; t; fÞ; ð5Þ
conditioned on the initial data f. By a straightforward calculation using (4) we obtain that the observable (5) satisfies the
initial value problem
@tuðf; tÞ ¼ Luðf; tÞ; uðf;0Þ ¼ f ðfÞ; ð6Þ
where the operator L : CbðSÞ ! CbðSÞ is known as the generator of the CTMC, [21] and in the case of (1) it is:
Lf ðrÞ ¼
X
r0

cðr;r0Þ½f ðr0Þ � f ðrÞ� ¼
X
x2KN

X
x2Sx

cðx;x; rÞ½f ðrx;xÞ � f ðrÞ�: ð7Þ
We then can write (5), as the action of the Markov semi-group etL associated with the generator L and the process fStgtP0,
[21], on the observable f:
uðf; tÞ ¼ Ef½f ðStÞ� ¼ etLf ðfÞ: ð8Þ
Next, we develop a spatial domain decomposition of the initial value problem (6) and the corresponding generator L: the
lattice KN is partitioned into subsets Cm such that the diameter diamCm > L, where L is the range of particle interactions
as they appear in the local rates (1), see for example (41); we can group the sets fCmgM

m¼1 in such a way that there is no
interaction between sites in the sets Cm that belong to the same group, for instance the lattice is divided into two sub-lattices
described by the index sets IB and IW , (black vs. white in Fig. 1(a)), hence we have
KN ¼ KB
N [KW

N :¼
[

m2IB

CB
m [

[
m2IW

CW
m : ð9Þ
By restricting the generator L onto each of the sub-lattices/-sets in the domain decomposition (9) we obtain a corresponding
generator decomposition:
L ¼ LB þ LW :¼
X

m2IB

LB
m þ

X
m2IW

LW
m : ð10Þ
Using the domain and generator decomposition in (9) and (10), we rewrite (6):
(a) Lattice decomposition in (9) using the checkerboard scheme mapped onto a single multi-threading processing unit (e.g., GPU). The integer cell
ates also indicate communication through boundary buffer regions. In practice other partitionings may result in a lower communication overhead.
archical lattice partitioning on a cluster of processing units.
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@tuðf; tÞ ¼ Luðf; tÞ ¼ LBuðf; tÞ þ LW uðf; tÞ; uðf;0Þ ¼ f ðfÞ; ð11Þ
which allows us to approximate the solution u by approximating the semigroup propagator (8) through the Trotter
Theorem [37] for the approximation of semigroups corresponding to operator sums, applied to the operator L ¼ LB þ LW :
uðf; tÞ ¼ etLf ðfÞ ¼ lim
n!1

e
t
nL

B
e

t
nL

W
h in

f ðfÞ: ð12Þ
In turn, (12) gives rise to the Lie splitting approximation for the propagator for a single time-step Dt:
eDtL � eDtLB
eDtLW

; where Dt ¼ T
n
; ð13Þ
while an n-fold iteration-see (21) provides an approximation up to any time t 6 T , as (12) shows. We note that we refer to
(13) as a Lie scheme due to its analogy to similar splitting schemes for Differential Equations, [13].

On the other hand, when the simulated systems exhibit interactions of length L, and the subsets Cm in (9) are selected
such that their diameter diamCm > L, then we readily see that the generators LB

k , LB
l commute for k; l 2 IB, k – l:
LB
kL

B
l � L

B
l L

B
k ¼ 0; for all k; l 2 IB; k – l:
Hence, [37], for each of the terms in (13), we have the exact formula,
eDtLB
eDtLW ¼

Y
m2IB

eDtLB
m
Y

m2IW

eDtLW
m : ð14Þ
Expression (14) is a key result for our method as it implies that the KMC solvers corresponding to the semigroup eDtLB
(resp.

eDtLW
) can be simulated exactly by breaking down the task into separate processors/threads for each m 2 IB (resp. m 2 IW ).

Therefore, this scheme is partly asynchronous allowing us to run independently on each fractional time-step window Dt, and
on every processor. The resulting computational framework consisting of the hierarchical decomposition (10). Relation (13)
permits to input as the algorithm’s kernel any preferred optimized serial KMC algorithm. A single time step of the parallel
algorithm is thus easily described in the following steps, following (13) and (14):

Step 1–Evolution by LB: Simulate independent Markov processes fSm
t gtP0, m 2 IB by a kinetic Monte Carlo kernel

running on non-communicating processors that correspond to each Cm for time Dt.
Step 2–Local synchronization: communicate configurations rB from overlapping domains �CB

m \ �CW
n in order to update con-

figurations rW .
Step 3–Evolution by LW : Simulate independent Markov processes fSm

t gtP0, m 2 IW by a KMC kernel on non-communi-
cating processors that correspond to each Cm for time Dt.

Step 4–Local synchronization: communicate configurations rW from overlapping domains �CB
m \ �CW

n in order to update con-
figurations rB.

The connection of the abstract evolution problem (6) with the KMC algorithm for simulating CTMC plays a crucial role for
developing a general hierarchical framework that is derived from the ideas of dimensional splitting, or equivalently of the
domain decomposition applied to the underlying lattice. Focusing on approximating observables is natural in many appli-
cations in which estimating functions that do not depend on paths is a primary computational goal. On the other hand in
many applications the interaction range L is short range, i.e., involving only a few nearest neighbors, and thus the domain
decomposition leads to an efficient parallel implementation since the communication between subdomains is confined to
relatively small boundary layers in neighboring subdomains.

In the proposed fractional step KMC (FS-KMC) schemes, processor communication is straightforward at the end of each
fractional time-step while no global communications or rollbacks are involved. In Section 5 we show that the hierarchical
structure of FS-KMC can be easily implemented for very general physiochemical processes modeled by lattice systems,
allowing users to input as the algorithm’s KMC kernel their preferred serial algorithm. This flexibility and hierarchical struc-
ture are key advantages for tailoring our framework to particular parallel architectures with complex memory and processor
hierarchies, e.g., clusters of GPUs. Furthermore, the mathematical framework of FS-KMC allows us to rigorously prove the
numerical and statistical consistency of the proposed algorithms, while on the other hand it provides a systematic evaluation
of different processor communication schedules. Indeed, in Section 3 the numerical and statistical consistency of the pro-
posed algorithms is rigorously justified by the Trotter Theorem, [37], [13] showing the convergence of our approximating
schemes to the original serial KMC algorithm, interpreted as convergence to the underlying Markov operator. Using the Ran-
dom Trotter Theorem [19] we show that the approximation schemes with a randomized schedule, including the one in [35]
as a special case, are numerically consistent in the approximation limit; that is, as the time step in the fractional step scheme
converges to zero, it converges to a continuous time Markov Chain that has the same master equation and generator as the
original serial KMC. In Section 4 we show that the proposed mathematical framework can allow the study of controlled-error
approximation properties of fractional step KMC schemes, as well as the systematic evaluation of different processor com-
municating schedules, comparing for instance the scheme in [35] to the Lie scheme (21). Finally, in Section 6 we discuss
work-load balancing between processors and propose a re-balancing scheme based on probabilistic mass transport methods,
[10], which is particularly well-suited for the proposed fractional step KMC methods. In Section 7 we present detailed bench-
marking of the proposed parallel algorithms using analytically available exact solutions, for instance, in Ising-type systems
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and demonstrate the capabilities of the method to simulate complex spatially distributed molecular systems, such as CO oxi-
dation on a catalytic surface.

2. Fractional step kinetic Monte Carlo algorithms

The proposed parallelization approach for KMC methods relies on approximating the evolution of relevant observables to
spatio-temporal processes, such as density, coverage, correlations, etc. We develop a domain decomposition of the Markov
operator – usually called a generator in the stochastic processes literature [21] – that describes the evolution of all observ-
ables according to the kinetic Monte Carlo algorithm. In this sense, our approach is not directly focusing on the exact con-
struction of stochastic trajectories through (2) and (3) as in most of the earlier work discussed in Section 1. Before we
proceed to the description of the proposed methods we review some notation and mathematical concepts from CTMC, as
well as some examples of physicochemical processes which are typically simulated via KMC methods.

First, we define the configuration space of the Markov processes underlying the KMC algorithms in (2) and (3). We con-
sider a d-dimensional lattice KN with N lattice sites. We restrict our discussion to lattice gas models where the order param-
eter or the spin variable takes value in a finite countable set R ¼ f0;1; . . . ;Kg. At each lattice site x 2 KN an order parameter
(a spin variable) rðxÞ 2 R is defined. The states in R correspond to occupation of the site x 2 KN by different species. For
example, if R ¼ f0;1g the order parameter models the classical lattice gas with a single species occupying the site x when
rðxÞ ¼ 1 and with the site being vacant if rðxÞ ¼ 0. The set of the order parameters over the entire lattice,
r ¼ frðxÞ : x 2 KNg, is called a configuration. We denote fStgtP0 the stochastic process of the KMC with values in the config-
uration space S ¼ RKN , i.e. a configuration r is the ‘‘snapshot’’ of the system at time t. Our primary focus is on modeling the
basic physicochemical processes of adsorption, desorption, diffusion and reactions between different species and below we
present them as particular examples.

We next turn our attention to the dynamics. First, the local dynamics is described by an updating mechanism and corre-
sponding transition rates cðx;x;rÞ in (1), such that the configuration at time t, St ¼ r changes into a new configuration rx;x

by an update in a neighborhood of the site x 2 KN . Here x 2 Sx, where Sx is the set of all possible configurations that corre-
spond to an update at a neighborhood Xx of the site x. For example, if the modeled process is a diffusion of the classical lattice
gas a particle at x, i.e., rðxÞ can move to any unoccupied nearest neighbor y of x, i.e., Xx ¼ fy 2 KN j jx� yj ¼ 1g and Sx is the
set of all possible configurations Sx ¼ RXx . Practically, the sample paths fStgtP0 are constructed via KMC, that is through the
procedure described in (2) and (3).

Observables of extended, spatially distributed systems such as coverage, surface roughness, correlations, etc. are defined
as continuous bounded functions f 2 CbðSÞ defined on the configuration space. Typically in KMC we need to compute ex-
pected values of such observables such as (8), where L is the generator (7), and the propagator of the observable f ¼ f ðfÞ
in time is given by the Markov semi-group etL associated with the generator L and the process fStgtP0, [21].

Finally, we present a few examples relevant to the processes modeled here. We refer, for instance, to [20,3,7] for a
complete discussion of the physical processes.

EXAMPLES.

1. Adsorption/desorption for single species particles. In this case spins take values in rðxÞ 2 R ¼ f0;1g, Xx ¼ fxg, Sx ¼ f0;1g
and the update represents a spin flip at the site x, i.e., for z 2 KN
rx;xðzÞ � rxðzÞ ¼
rðzÞ if z – x;

1� rðxÞ if z ¼ x:

�

2. Diffusion for single species particles. The state space for spins is rðxÞ 2 R ¼ f0;1g, Xx ¼ fy 2 KN j jx� yj ¼ 1g includes all
nearest neighbors of the site x to which a particle can move. Thus the new configuration rx;x ¼ rðx;yÞ is obtained by
updating the configuration St ¼ r from the set of possible local configuration changes f0;1gXx using the specific rule,
also known as spin exchange, which involves changes at two sites x and y 2 Xx
rx;xðzÞ � rðx;yÞðzÞ ¼
rðzÞ if z – x; y;

rðxÞ if z ¼ y;

rðyÞ if z ¼ x:

8><
>:
The transition rate is then written as cðx;x;rÞ ¼ cðx; y;rÞ. The resulting process fStgtP0 defines dynamics with the total
number of particles (

P
x2KN

rðxÞ) conserved, sometimes referred to as Kawasaki dynamics.
3. Multicomponent reactions. Reactions that involves K species of particles are easily described by enlarging the spin space

to R ¼ f0;1; . . . ;Kg. If the reactions occur only at a single site x, the local configuration space Sx ¼ R and the update is
indexed by k 2 R with the rule
rx;xðzÞ � rðx;kÞðzÞ ¼
rðzÞ if z – x; y;

k if z ¼ x:

�

The rates cðx;x;rÞ � cðx; k;rÞ define probability of a transition rðxÞ to species k ¼ 1; . . . ;K or vacating a site, i.e.,
k ¼ 0, over dt.
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4. Reactions involving particles with internal degrees of freedom. Typically a reaction involves particles with internal degrees
of freedom, and in this case several neighboring lattice sites may be updated at the same time, corresponding to the
degrees of freedom of the particles involved in the reaction. For example, in a case such as CO oxidation on a catalytic
surface, [22], when only particles at a nearest-neighbor distance can react we set rðxÞ 2 R ¼ f0;1; . . . ;Kg,
Xx ¼ fy 2 KN j jx� yj ¼ 1g and the set of local updates Sx ¼ RXx . Such Sx contains all possible reactions in a neighborhood
of x. When reactions involve only pairs of species, the rates can be indexed by k; l 2 R, or equivalently Sx ¼ R� R. Then
the reaction rate cðx;x;rÞ ¼ cðx; y; k; l;rÞ describes the probability per unit time of rðxÞ ! k at the site x and rðyÞ ! l at
y, i.e., the updating mechanism
rx;xðzÞ � rðx;y;k;lÞðzÞ ¼
rðzÞ if z – x; y;

k if z ¼ x;

l if z ¼ y;

8><
>:
where jx� yj ¼ 1.

2.1. Domain decomposition and hierarchical structure of the generator

The generator of the Markov process fStgtP0 given in a general form in (7) is our starting point for the development of
parallel algorithms based on geometric partitioning of the lattice. The lattice KN is decomposed into non-overlapping cells
Cm, m ¼ 1; . . . ;M such that
KN ¼
[M

m¼1

Cm; Cm \ Cn ¼ ;; m – n: ð15Þ
With each set Cm a larger set �Cm is associated by adding sites to Cm which are connected with sites in Cm by interactions or
the updating mechanism, see Fig. 1(a). More precisely, we define the range of interactions L for the set Cm and the closure of
this set
�Cm ¼ fz 2 KN j jz� xj 6 L; x 2 Cmg; where L ¼max
x2Cm
fdiamXxg:
In many models the value of L is independent of x due to translational invariance of the model. The boundary of Cm is then
defined as @Cm ¼ �Cm n Cm. This geometric partitioning induces a decomposition of the generator (7)
Lf ðrÞ ¼
X
x2KN

X
x2Sx

cðx;x; rÞ½f ðrx;xÞ � f ðrÞ� ð16Þ

¼
XM

m¼1

X
x2Cm

X
x2Sx

cðx;x;rÞ½f ðrx;xÞ � f ðrÞ� ð17Þ

¼
XM

m¼1

Lmf ðrÞ: ð18Þ
The generators Lm define new Markov processes fSm
t gtP0 on the entire lattice KN .

For example, in many models, [20], the interactions between particles are of the two-body type with the nearest-neighbor
range and therefore the transition rates cðx;x;rÞ depend on the configuration r only through rðxÞ and rðyÞ with jx� yj ¼ 1.
Similarly the new configuration rx;x involve changes only at the sites in this neighborhood. Thus the generator Lm updates

the lattice sites at most in the set �Cm ¼ fz j jx� zj ¼ 1; x 2 Cmg, see Fig. 1(a). Consequently the processes fSm
t gtP0 and fSm0

t gtP0

corresponding to Lm and Lm0 are independent provided �Cm \ �Cm0 ¼ ;. Therefore, the decomposition (16) allows us to define
independent processes which yields an algorithm suitable for parallel implementation, in particular, in the case of short-
range interactions when the communication overhead can be handled efficiently.

In general, if the lattice KN is partitioned into subsets Cm such that the diameter diamCm > L, where L is the range of
interactions, we can group the sets fCmgM

m¼1 in such a way that there is no interaction between sites in the sets Cm that
belong to the same group. For the sake of simplicity we assume that the lattice is divided into two sub-lattices described
by the index sets IB and IW , (black vs. white in Fig. 1(a)), hence we have the domain decomposition (9). Other lattice
partitionings are also possible and may be more suitable for specific micro-mechanisms in the KMC or the computer
architecture. Returning to (9), the sub-lattices induce a corresponding splitting of the generator in (10). This simple
observation has key consequences for simulating the process fStgtP0 in parallel, as well as formulating different related

algorithms: the processes fSm
t gtP0 corresponding to the generators LB

m are mutually independent for different m 2 IB, and

thus can be simulated in parallel; similarly we can handle the processes belonging to the group indexed by IW . However,
there is still communication between these two groups as there is non-empty overlap between the groups due to inter-
actions and updates in the sets @Cm, @Cm0 when m 2 IB and m0 2 IW and the cells are within the interaction range L. To
handle this communication we next introduce a fractional step approximation of the Markov semigroup etL associated
with the process fStgtP0.
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2.2. Fractional step kinetic Monte Carlo algorithms

The focus of our proposed schemes is the simulation of mean observables such as (5), which solves (6). Using the domain
and generator decomposition in (9) and (10), we rewrite (6) as:
@tuðf; tÞ ¼ Luðf; tÞ ¼ LBuðf; tÞ þ LW uðf; tÞ; uðf;0Þ ¼ f ðfÞ; ð19Þ
which allows us to approximate the solution u by approximating the semigroup propagator (8) through the Trotter Theo-
rem [37] for the approximation of semigroups corresponding to operator sums. We note that the Trotter Theorem has found
wide application in the numerical ODE/PDE analysis, e.g., [13]. Similarly, the key tool for our analysis is a deterministic as
well as a stochastic version of the Trotter formula, [19], applied to the operator L ¼ LB þ LW :
uðf; tÞ ¼ etLf ðfÞ ¼ lim
n!1

e
t
nL

B
e

t
nL

W
h in

f ðfÞ: ð20Þ
The proposed parallel scheme uses the fact that the action of the operator LB (and similarly of LW ) can be distributed onto
independent processing units in (22). Thus to reach a time T we define a time step Dt ¼ T

n for a fixed value of n and alternate
the evolution by LB and LW . More precisely, (20) gives rise to the Lie splitting approximation for n� 1:
eTL � eDtLB
eDtLW

h in
; where Dt ¼ T

n
: ð21Þ
The approximation can be quantified through an error expansion for each time Dt, as in (38). On the other hand, since the
simulated systems exhibit short-range interactions L, and the subsets Cm in (9) where chosen such that the diameter
diamCm > L, the generators LB

k , LB
l commute for k; l 2 IB, k – l: LB

kL
B
l � L

B
l L

B
k ¼ 0, for all k; l 2 IB, k – l. Hence, [37], for each

of the terms in (21), we have the exact formula
eDtLB
eDtLW ¼

Y
m2IB

eDtLB
m
Y

m2IW

eDtLW
m : ð22Þ
Then the expression (22) implies that the KMC solvers corresponding to the semigroup eDtLB
(resp. eDtLW

) can be simulated
exactly by breaking down the task into separate processors/threads for each m 2 IB (resp. m 2 IW ). Therefore, this scheme is
partly asynchronous allowing us to run independently on each fractional time-step window Dt, and on every processor, a se-
rial KMC simulation, called a kernel. The resulting computational framework consisting of the hierarchical decomposition
(10) and (21) permits to input as the algorithm’s kernel any preferred optimized serial KMC algorithm.

Finally, we emphasize that due to (21), the resulting process f~StgtP0 is an approximation of the process fStgtP0 and we
discuss its features and properties in the next two sections.

3. Processor Communication Schedule and Random Trotter Products

A key feature of the fractional step methods is the Processor Communication Schedule (PCS) that dictates the order with
which the hierarchy of operators in (16) are applied and for how long. For instance, in (21) the processors corresponding
to LB (resp. LW ) do not communicate, hence the processor communication within the algorithm occurs only each time we
have to apply e

T
2nL

B
or e

T
2nL

W
. Therefore we can define as the PCS the (deterministic) jump process X ¼ XðtÞ, t 2 ½0; T�, where

½0; T� is the simulated time window and taking values in the set X ¼ f1;2g, where we assign the value 1 (resp. 2) to W (resp.
B):
XðtÞ ¼ 1;
2kT

n
6 t <

ð2kþ 1ÞT
n

; ð23Þ

XðtÞ ¼ 2;
ð2kþ 1ÞT

n
6 t <

ð2kþ 2ÞT
n

: ð24Þ
for all k ¼ 0; . . . ;n� 1. Processor communication occurs at jump times, while in the remaining time the processors operate
independently and do not communicate. In an analogous way we can define the PCS for the Strang splitting scheme (25),
eTL � e
T

2nL
B
e

T
nL

W
e

T
2nL

B
h in

; ð25Þ
with the scheduling process
XðtÞ ¼ 1;
2kT
2n
6 t <

ð2kþ 1ÞT
2n

; ð26Þ

XðtÞ ¼ 2;
ð2kþ 1ÞT

2n
6 t <

ð2kþ 3ÞT
2n

; ð27Þ

XðtÞ ¼ 1;
ð2kþ 3ÞT

2n
6 t <

ð2kþ 4ÞT
2n

; ð28Þ
for all k ¼ 0; . . . ; n� 1.
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3.1. Random fractional step methods

In both cases above (21) and (25), the communication schedule is fully deterministic, relying on the Trotter Theorem (20).
On the other hand, we can construct stochastic PCS based on the Random Trotter Product Theorem, and as we show below the
sub-lattice algorithm proposed in [35] is a fractional step algorithm with stochastic PCS.

The Random Trotter Product Theorem, [19], extends (20) as follows: We consider a sequence of semigroups eTLn with cor-
responding operators Ln where n is in the index set X , assuming for simplicity X is finite, although a much more general
setting is possible, (34). Consider also a stochastic jump process X ¼ XðtÞ with X as its state space. For each of its trajectories
we denote by n0; n1; . . . nn the (typically random) sequence of states visited by the stochastic process XðtÞ and s0; s1; . . . ; sn the
corresponding (also typically random) jump times
XðtÞ ¼ n0; 0 6 t < s0; ð29Þ
XðtÞ ¼ n1; s0 6 t < s1; ð30Þ
. . . ð31Þ
XðtÞ ¼ nk; sk�1 6 t < sk: ð32Þ
We additionally define as NðtÞ the number of jumps up to time t. We assume that XðtÞ is selected so that it has an ergodic
behavior, i.e., there is a probability measure lðdnÞ such that for all bounded functions g we have that
lim
t!1

1
t

Z t

0
gðXðsÞÞds ¼

Z
gðnÞlðdnÞ: ð33Þ
For example, if XðtÞ is a Markov process then under suitable conditions, (33) will hold, where l will be the stationary dis-
tribution of XðtÞ, [21]. Conversely, it is well-known that for a given l we can construct in a non-unique way Markov pro-
cesses XðtÞ which satisfy the condition (33), [21]. Now we can state the Random Trotter Product Theorem, [19], in
analogy to (20):
eT �L ¼ lim
n!1

e
s0
n Ln0 e

s1�s0
n Ln1 � � � e

nT�sNðntÞ
n LnNðntÞ

� �
; ð34Þ
where the operator �L is defined on any bounded function as
�Lg ¼
Z
LnlðdnÞ: ð35Þ
It is clear that (21) is a special case of (34) when sk � sk�1 ¼ 1 and n2k ¼ 1, n2kþ1 ¼ 2 for all k. Similarly, we can also view (25)
as a deterministic analogue of (34).

On the other hand, in the context of the parallel fractional step algorithms for KMC introduced here, the random process
(29) can be interpreted as a stochastic PCS. For example, the sub-lattice (SL) parallelization algorithm for KMC, introduced in
[35], is a fractional step algorithm with stochastic PCS: indeed, in this method the lattice is divided into sub-lattices, for in-
stance as in (9), KN ¼ KB

N [KW
N . Each sub-lattice is selected at random and advanced by KMC over a fixed time window Dt.

Then a new random selection is made and again the sub-lattice is advanced by Dt, and so on. The procedure is parallelizable
as cells CB

m, CW
m within each sub-lattice do not communicate. This algorithm is easily recast as a fractional step approximation,

when in (29) we select deterministic jump times sk and random variables nk:
sk � sk�1

n
¼ Dt; and Pðnk ¼ 1Þ ¼ Pðnk ¼ 2Þ ¼ 1

2
: ð36Þ
As in (23), here we assign the value 1 (resp. 2) to the W (resp. B) sub-lattice. Furthermore, we can easily calculate (35) to
obtain
�Lg ¼ 1
2
ðLB þ LWÞ;
which is just a time rescaling of the original operator L. Thus the SL algorithm is rewritten as the fractional step approxima-
tion with the stochastic PCS (36) as
eT �L � e
s0
n Ln0 e

s1�s0
n Ln1 � � � e

nT�sNðntÞ
n LnNðntÞ : ð37Þ
From the numerical analysis viewpoint, our re-interpretation of the SL algorithm in [35] as a fractional step scheme allows us
to also provide a mathematically rigorous justification that it is a consistent estimator of the serial KMC algorithm, due to the
Random Trotter Theorem (34). That is, as the time step in the fractional step scheme converges to zero, it converges to the
continuous time Markov Chain that has the same master equation and generator as the original serial KMC. Finally, the
(deterministic) Trotter Theorem (20) also implies that the Lie and the Strang schemes are, in the numerical analysis sense,
consistent approximations of the serial KMC algorithm.
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4. Controlled error approximations of KMC

In this section we present a formal argument for the error analysis of the fractional step approximations for KMC, which
suggests the order of convergence of the schemes, as well as the restrictions on the fractional step KMC time step Dt. In the
decomposition (10) the operators are linear operators on the high, but finite-dimensional configuration space S, hence by the
standard error analysis of splitting schemes, see [13], we have
eDtL � eDtLB
eDtLW ¼ ½LB;LW � ðDtÞ2

2
þOðDt3Þ; ð38Þ
where we readily see that the term ½LB;LW � :¼ LBLW � LWLB is the Lie bracket (commutator) of the operators LB, LW . This Lie
bracket captures the effect of the boundary regions �CB

m \ �CW
n through which we have processor communication: if there was

no communication the Lie bracket would be exactly zero.
Furthermore, instead of (21) we can consider the Strang-type splitting (25). As in the ODE case, [13], this is expected to

yield a higher order error term OðDt3Þ instead of the second order approximation in (38), in the following sense:
eDtL � e
Dt
2L

B
eDtLW

e
Dt
2L

B ¼ 1
12
½LW ; ½LW ;LB�� � 1

24
½LB; ½LB;LW ��

� �
ðDtÞ3 þOðDt4Þ: ð39Þ
Such calculations suggest that the Strang splitting leads to a more accurate scheme, which is balanced by more complicated
boundary local communication in the same time window Dt, as is evident when comparing (21) and (25).

Next, we briefly comment on the error estimation suggested by the calculation (38) and return to the rigorous numer-
ical analysis in [1]. In order to obtain an estimate in the right-hand side of (38) which is independent of the system size N,
it is essential to obtain an upper bound on the total number of jumps up to the time T. This is a key point related to the
extensivity of the system and to the fact that the weak error analysis is restricted (as it should be physically) to mesoscopic
observables satisfying (54). We observe the dependence of the error on mesoscopic observables in the following subsec-
tion. In the context of coarse-graining, in [16] an analogous estimate was shown rigorously using a Bernstein-type argu-
ment applied to the discrete derivatives, in the spirit of (54), of the solutions to the backward Kolmogorov equation. We
refer to such bounds as ‘‘Bernstein-like’’ due to their similarity to gradient estimates for linear and nonlinear parabolic
PDEs.

4.1. Error analysis and comparison between random and deterministic PCS

In this section we further demonstrate the use of the operator splitting formulation as a numerical analysis tool by com-
paring the time-step of Dt the random PCS introduced in [35] to the deterministic Lie PCS introduced in (21). A similar com-
parison can be made for the Strang scheme (25). A detailed discussion including rigorous error estimates for mesoscopic
observables such as (54), which are independent of the lattice size N will be discussed in [1].

Here we focus on the example of adsorption/desorption discussed in Section 2. The generator in the one space dimension
is decomposed as in (10)
LBf ðrÞ ¼
X
x2K

cBðx;rÞðf ðrxÞ � f ðrÞÞ;
and
LW f ðrÞ ¼
X
x2K

cWðx;rÞðf ðrxÞ � f ðrÞÞ;
where
cBðx;rÞ ¼ cðx;rÞ; x 2 KB
N

0; otherwise

(
cWðx;rÞ ¼ cðx;rÞ; x 2 KW

N

0; otherwise

(

and the sub-lattices KB
N , KW

N are defined in (9). The rates cðx;rÞ of the corresponding generator (7) for the case of Arrhenius
adsorption/desorption are given by
cðx;rÞ ¼ cað1� rðxÞÞ þ cdrðxÞ expð�bUðx;rÞÞ; ð40Þ
where ca and cd are the adsorption and desorption constants respectively, [7]. The desorption potential U ¼ Uðx;rÞ is defined
as
Uðx;rÞ ¼
X
y–x

Jðx� yÞrðyÞ; ð41Þ
where J ¼ Jðx� yÞ is the lateral interaction potential; for simplicity we assume that the range of interactions is L, while in
typical simplified nearest neighbor models L ¼ 1. Similarly we define diffusion dynamics with Arrhenius dynamics, [15].
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First we discuss the error analysis for the Lie splitting scheme. For given finite lattice size N, in the decomposition (10) the
operators are linear operators on the high, but finite-dimensional configuration space S, hence by the standard error analysis
of Lie splitting schemes, we obtain (38). A more careful study of the commutator reveals that the generator decomposition
(10) induces significant cancellations in the evaluation of the generator: indeed, we define
Co
m ¼ Cm n @Cm; Cm ¼ Co

m [ C@
m;
where in Section 2 we introduced @Cm ¼ �Cm n Cm and �Cm ¼ fz 2 KN j jz� xj 6 L; x 2 Cmg. Thus, in (10) we obtain the further
decomposition
LB ¼ LB;o þ LB;@ :¼
X
m2IB

LB;o
m þ L

B;@
m ; ð42Þ
where LB;o
m , LB;@

m is the restriction of LB on Co
m and C@

m respectively. Analogously we define LW ¼ LW;o þ LW ;@ . We now return to
the evaluation of the commutator
½LB;LW � ¼ ½LB;@ ;LW;@ � þ ½LB;o;LW ;o� þ ½LB;@ ;LW;o� þ ½LB;o;LW;@ �: ð43Þ
However, due to the lack of communication between generators beyond the interaction range, we have that
½LB;o;LW;o� ¼ 0; ½LB;@ ;LW;o� ¼ 0; ½LB;o;LW ;@ � ¼ 0;
thus we readily get
½LB;LW � ¼ ½LB;@ ;LW;@ � ¼
X

m2IB

X
l2IW
jl�mj¼1

½LB;@
m ;LW;@

l �: ð44Þ
The formula (44) captures the processor communication between boundary regions of �CB
m, �CW

n . But more importantly, when
combined with (38), it suggests the limitations on the time window Dt of the Lie scheme (21), denoted for differentiation by
DtLie, in order to obtain a given error tolerance TOL. In that sense it is useful to obtain an upper bound on (44). Indeed, we
readily obtain:
½LB;LW �f ðrÞ ¼
X

m2IB ;l2IW
jl�mj¼1

X
x;y

½cBðx;rÞcWðy;rxÞ � cBðx;ryÞcWðy;rÞ�f ððrxÞyÞ �
X
x;y

cBðx;rÞ½cWðy;rxÞ � cWðy;rÞ�f ðrxÞ

�
X
x;y

cWðy;rÞ½cBðx;rÞ � cBðx;ryÞ�f ðryÞ; ð45Þ
where all summations are over x 2 CB;@
m , y 2 CW ;@

l . For mesoscopic observables, such as the mean coverage
f ðrÞ ¼ 1
N

X
x2K

rðxÞ; ð46Þ
we obtain
½LB;LW �f ðrÞ¼
X

m2IB ;l2IW
jl�mj¼1

X
x;y

cW ðy;rÞ½cBðx;rÞ�cBðx;ryÞ�1�2rðxÞ
N

þ
X
x;y

cBðx;rÞ½cW ðy;rxÞ�cWðy;rÞ�1�2rðyÞ
N

; ð47Þ
where all summations are over x 2 CB;@
m , y 2 CW ;@

l . Therefore, due to the cancellation of all interior components LB;o, LW;o in
(44), we obtain the bound for the case of the interaction range L ¼ 1,
j½LB;LW �f ðrÞj 	 O
M � L

N

� �
¼ O

1
q

� �
; ð48Þ
where q is the size of each cell Cm, and Oð1Þ depends on the physical parameters in the rate (40). The local error analysis in
(38) and (48) can be propagated up to a prescribed time T ¼ NLieDtLie Therefore, for the simulation of the mesoscopic obser-
vable f up to the time T within a given error tolerance TOL, (38) and (48)give the observable-dependent relation for the Lie
time step
TOL 	 T � j½LB;LW �f ðrÞjDtLie 	 T � O 1
q

� �
DtLie: ð49Þ
Next, using the fractional step formulation, we analyze in the same spirit as for the Lie scheme, the random PCS (36) pro-
posed in [35]. For notational simplicity we set A1 ¼ LW , A2 ¼ LB. Then the local error operator EDt can also be calculated as in
(38):
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Local Error ¼ EDt :¼ eDtAn1 eDtAn2 � eDtðA1þA2Þ

¼ I þ ðAn1 þ An2 ÞDt þ 1
2
ðA2

n1
þ 2An1 An2 þ A2

n2
ÞDt2

� �
� I þ ðA1 þ A2ÞDt þ 1

2
ðA1 þ A2Þ2Dt2

� �
þ OðDt3Þ: ð50Þ
The mean value of the error over the sequence of independent random variables n ¼ ðni; i ¼ 1; . . . ;nÞ of the PCS (36) on an
observable f ¼ f ðrÞ, s 2 S can be explicitly evaluated:
En½EDt f � ¼ 1
4
ðA1 � A2Þ2fDt2 þ OðDt3Þ ¼ 1

4
ðLB � LWÞ2fDt2 þ OðDt3Þ:
As in (48), for the mesoscopic observable f ðrÞ ¼ 1
N

P
x2KrðxÞ, we obtain, after disregarding the higher order local error OðDt3Þ,
ðLB � LWÞ2f ðrÞ 	 Oð1Þ; ð51Þ
where Oð1Þ depends on the physical parameters in the rate (40). Similarly to (49), for the simulation of the mesoscopic ob-
servable f up to the same prescribed time T ¼ NRandomDtRandom, within the same error tolerance TOL, (38) and (51) give the
observable-dependent relation for the random PCS time step
TOL 	 T � jðLB � LWÞ2f ðrÞjDtRandom 	 T � Oð1ÞDtRandom: ð52Þ
Comparing the random and the Lie PCS through (49) and (52) implies that in order the two schemes to conform (in the mean)
to the same tolerance TOL, their respective time steps should be selected so that
DtLie 	 OðqÞDtRandom: ð53Þ
This relation in turn suggests that the Lie scheme (21) is expected to parallelize better than the random PCS (36) since it
allows a q-times larger time step Dt for the same accuracy, keeping in mind that during each time step processors do not
communicate.

A similar analysis is possible for general mesoscopic observables f ¼ f ðrÞ, s 2 S, e.g., spatial correlations, that satisfy
X
x2KN

jf ðrxÞ � f ðrÞj 6 C; ð54Þ
where C is a constant independent of N, see the formulation and estimates for coarse-grained stochastic systems in [16]. We
revisit this issue, as well as the rigorous derivation of N-independent error bounds in place of the expansions (38) and (39)in
the upcoming publication [1]. Such estimates can also allow a detailed analysis on the balance between accuracy and local
processor communication for PCS such as (21), (25) and (36).
5. Hierarchical structure of fractional step algorithms and implementation on GPUs

The fractional step framework allows a hierarchical structure to be easily formulated and implemented, which is a key
advantage for simulating in parallel architectures with complex memory hierarchies and processing units. The Graphical
Processing Unit (GPU) architecture is inherently different from a traditional CPU architecture. GPUs are massively parallel
multi-threaded devices capable of executing a large number of active threads concurrently. A GPU consists of multiple
streaming multiprocessors (MP), each of which contains multiple scalar processor cores. For example, NVIDIA’s C2050
GPU architecture contains 14 such multiprocessors, each of which contains 32 cores, for a total of 448 cores which can han-
dle up to 24 k active threads in parallel. A GPU has several types of memory which are differently organized compared to the
traditional hierarchical CPU memory, most notably the main device memory (global memory) shared between all the mul-
tiprocessors and the on-chip memory shared between all cores of a single multiprocessor (shared memory). The memory
sizes and access speeds depend on the type of GPU. For instance, the memory size of the NVIDIA C2050 GPU is 3 GB while
the memory size of the NVIDIA C2070 GPU is 6 GB.

From the perspective of a GPU programmer writing a code for NVIDIA GPU’s, the GPU is treated as a co-processor to the
main CPU. Programs are written in C and linked to the CUDA libraries [33]. A function that executes on the GPU, called a GPU
kernel, consists of multiple threads executing code in a single instruction, multiple data (SIMD) fashion. That is, each thread
in a GPU kernel executes the same code, but on different data. Further, threads can be grouped into thread blocks. This
abstraction takes advantage of the fact that threads executing on the same multiprocessor can share data via on-chip shared
memory, allowing some degree of cooperation between threads in the same block [33]. A major drawback in GPU program-
ming is the slow communication between GPU global memory and the main memory of the CPU, compared to the commu-
nication within a GPU. Programmers address this problem by maximizing the amount of arithmetic intensive computations
performed on GPU, minimizing the communication between CPU and GPU, and allowing the communication latency to be
hidden by overlapping with execution. Communication among GPUs, although costly, is enabled by APIs such as OpenMP
and features available in CUDA 2.2+ such as portable pinned memory, when the communication is among GPUs connected
to the same shared-memory computer node. When the communication takes place among GPUs across nodes of a cluster,
message passing paradigms such as MPI can serve the same scope.
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In our parallelization of the KMC method, we redefine the data structures to represent lattice sites in the simulation so
that the whole simulated system is cut into equal-sized black and white coarse cells like a chessboard in (9). For instance,
Fig. 1(a) shows a simple example in which we map a 4� 4 lattice sites into 2� 2 cells, each cell containing 2� 2 sites. One
GPU thread is assigned to one cell. Coverage information of the whole lattice is stored in an array located in the GPU global
memory so that all the threads can access the information related to their neighboring sites across MPs. The GPU kernel per-
forming the KMC simulation over the whole lattice by using the Lie scheme (21) and the decomposition (10), is sequentially
launched twice for each synchronization time step Dt to work on the black and white cells respectively. The execution times
for lattices of different sizes are compared in Fig. 2, where we take as a reference a sequential KMC-kernel, which is a direct
numerical implementation of (2) and (3). The same kernel is then used for the implementation on GPUs where we compare
times for different choices of Dt. We remark that the KMC kernel is not optimized by techniques such as the BKL algorithm,
[6,20], which is also manifested in the scaling with respect to the size of the lattice N. However, the same kernel is used in the
fractional step algorithm thus here we present comparisons between the same KMC algorithms, one serial and one parall-
elized by the fractional step approach. Clearly any optimized KMC kernel can be used without difficulty in our framework.

The size of lattices that can be simulated on a single GPU is limited by memory, thus in order to simulate large systems it
will be necessary to employ a cluster of GPUs communicating, for instance, through an MPI protocol. We will demonstrate
next how fractional step KMC algorithms can be tailored to an architecture that involves multiple GPUs. We return to the
formulation in (10), and consider the sub-lattice decomposition (9). In this formulation each one of the coarse-cells CB

m or
CW

m are simulated on a single GPU. Within each one of the GPUs we have the same lattice decomposition as in (9), see
Fig. 1(b), namely
Fig. 2.
same S
algorith
indicate
scale as
CB
m ¼ CBB

m [ CBW
m :¼

[L

l¼1

DBB
ml [

[L
l¼1

DBW
ml ; ð55Þ
and similarly we define a decomposition for CW
m . Each one of the (sub-)lattices DBB

ml and DBW
ml corresponds to individual threads

within the GPU. Next, (9) and (55) define nested sub-lattices, which yield a hierarchical decomposition of the operator L into
(10) and
LB
m ¼ L

BB
m þ L

BW
m :¼

XL

l¼1

LBB
ml þ

XL

l¼1

LBW
ml ; ð56Þ
and similarly we also define the decomposition for LW
m . Finally, schemes such as (21) and (25) give rise to fractional step algo-

rithms based on the nested decompositions (10) and (56). In this case, boundary communication, see Fig. 1(b), plays a key
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OðNÞ only, which is in agreement with the observed slope in the plots.
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role in the parallelization of our algorithm when multiple GPUs are required. As we discussed earlier, this scenario happens
when the lattice size grows to the point that the lattice data structures no longer fit into a single GPU global memory. In turn,
this threshold depends on the type of GPU used, e.g., for a NVIDIA’s C2050 GPU the maximum lattice size is currently
8,182 � 8,182 cells. To simulate larger systems, we can decompose the domain into regular sub-domains and distribute both
the sub-domain cells and associated computation among multiple GPUs, as discussed in (56). Boundary communication be-
tween two adjacent sub-domains are exchanged between GPUs, see Fig. 1(b), and supported by either MPI or OpenMP,
depending on the fact that the GPUs are located on the same cluster node or across nodes. Thus, the multi-GPU parallel
KMC algorithm is based on and benefits from the hierarchical structure of the fractional step KMC algorithms discussed
in (56). At the same time, it can enable the scalability of our simulations to lattice sizes beyond the ones accessible with
a single GPU e.g., 8,182 � 8,182 sites in a C2050 GPU. The study of performance and scalability of our multi-GPU algorithm
and code for different lattice sizes and types of GPU clusters is beyond the scope of this paper.

6. Mass transport and dynamic workload balancing

Due to the spatially distributed nature of KMC simulations and the dependence of jump rates on local coverage, (2), frac-
tional step algorithms may have an imbalance in the number of operations/jumps performed in each coarse cell Cm in (9), as
well as on the corresponding processors. In fact, formulas (2) and (3), and the very structure of the fractional step algorithms
(10), allow us to define the workload WnDtðrÞ ¼WnDtðm;rÞ, 1 6 m 6 M as
0

1

0

0

Fig. 3.
Worklo
WnDtðmÞ ¼ #jumps in Cm during ½ðn� 1ÞDt; nDt�; ð57Þ
when the configuration at time ðn� 1ÞDt is r. We also renormalize WnDt (and still denote it with the same symbol) in order
to obtain a histogram, i.e., a probability density. Since different coarse cells Cm in the fractional step algorithms such as (21)
or (25) do not communicate during intervals of length Dt the quantities (57) are easy to keep track on-the-fly during the
simulations. The possibility of workload imbalance is depicted in Fig. 3, where many more jumps are performed in the pro-
cessors corresponding to cells of low coverage, while the other processors remain idle.

In this section we introduce a probabilistic strategy to re-balance the workload WnDt dynamically during the simulation
based on the following idea from mass transport methods, e.g., [10]. One wants to transport the ‘‘imbalanced’’ density WnDt

into an almost uniform density over the number of processors used, in order to ensure that they remain as uniformly active
as possible. The mass transport connection and terminology refers to the mapping of a given probability measure into a
desirable probability measure. Typically, [10], this problem is posed as an optimization over a suitable cost functional
and is known as the Monge–Kantorovich problem. In our context the cost functional could reflect constraints related to var-
ious parallel architectures.

We can formulate and implement this strategy in several different ways: probably the simplest approach, that serves
mostly as an illustration, is to assume that we have a number of processors P, where P 
 M; during the interval
½ðn� 1ÞDt;nDt� a number of coarse cells Cm, 1 6 m 6 M, which are simulated independently in a fractional step algorithm,
are allocated to each processor. By the end of the simulation time nDt the workload on all processors is described similarly
to (57), by a histogram RnDtðrÞ ¼ RnDtðl;rÞ, 1 6 l 6 P. One wants to map (57) onto a histogram RnDt which is almost uniform in
1 6 l 6 P. One such function can be constructed by mapping the mass corresponding to each value of the cumulative distri-
bution function (cdf) of (57), onto an equal mass on the uniform distribution over the P processors. In another implemen-
tation of the mass transport method we can adjust the size of the coarse cells Cm according to the workload
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redistribution strategy discussed earlier, see Fig. 3. This is effectively a one-dimensional example of an adsorption/desorp-
tion process where the mass transport procedure is carried out by mapping (57) into a new histogram RnDtðrÞ ¼ RnDtðl;rÞ
corresponding to a new set of variable size coarse cells Cl, 1 6 l 6 M0. The cell size adjustment ensures the uniformity of
the new histogram by defining RnDt as a mapping of the cdf corresponding to (57).

The mass transport mappings discussed above are not expected to be carried out at every time step nDt in order to reduce
computational and communication cost, but instead they should follow a rationally designed coarser-in-time schedule, in
analogy to processor communication scheduling, e.g., (29).The overall implementation appears rather simple since here
we demonstrated the methodology in a one-dimensional example. However, in higher dimensions, adjusting the size and
shape of coarse cells Cm can be much harder. Nevertheless the structure of re-balancing procedure can remain one-dimen-
sional even in higher dimensional lattices if we pick a sub-lattice decomposition (15) into strips Cm. We note that the map-
ping we constructed using cdf’s did not take into account the processor architecture and a suitable cost functional
formulation for the mass transport to a uniform distribution, as in the Monge–Kantorovich problem, [10], may be more
appropriate. We will revisit such issues in a future publication.

7. Parallel simulations: benchmarks and applications

Exactly solvable models of statistical mechanics provide a test bed for sampling algorithms applied to interacting particle
systems. We present benchmarks for two important cases: (a) sampling of equilibrium distributions, i.e., long time behavior
of the simulated Markov process, and (b) weak approximations of the dynamics. In the first set of tests we work with the
classical Ising model on one and two dimensional lattices where spins interact through a nearest-neighbor potential. Thus
the Hamiltonian of the system is
HðrÞ ¼ �K
2

X
x2KN

X
jy�xj¼1

rðxÞrðyÞ þ h
X
x2KN

rðxÞ;
where K is a real parameter that defines the strength of the interaction and h the external field. We work with the spin-flip
Arrhenius dynamics with the rates defined in the nearest-neighbor set Xx ¼ fz j jz� xj ¼ 1g and the updates in Sx ¼ f0;1g.
cðx;rÞ ¼ c1ð1� rðxÞÞ þ c2rðxÞe�bUðxÞ; ð58Þ
UðxÞ ¼ K

X
y2Xx

rðxþ yÞ þ h; ð59Þ
with b is a given inverse temperature. The generator of (58) is a self-adjoint operator on the space L2ðS;lNÞ where
lNðdrÞ ¼ Z�1e�bHðrÞ dr is the canonical Gibbs measure of the system at the constant inverse temperature b. Consequently
the dynamics is reversible and the measure lt of the process fStgtP0 converges to the Gibbs measure lN as t !1. Thus
the dynamics (58) can be used for computing expected values ElN

½f � by invoking ergodicity and averaging on a single
trajectory
ElN
½f � �

Z
S

f ðrÞlNðdrÞ ¼ lim
T!1

1
T

Z T

0
f ðStÞdt:
In the simulations we estimate two observables:
mean coverage : �ct ¼
1
jKN j

E
X
x2KN

rtðxÞ
" #

;

2-point correlation function : �ktðx; yÞ ¼ E½rtðxÞrtðxþ yÞ�:
Due to translational invariance the function �kkðx; yÞ depends on the distance jx� yj only. For exactly solvable one and two
dimensional Ising models we have explicit formulas which we summarize here for the spins in R ¼ f0;1g.

1D Ising model: The one-dimensional Ising model does not exhibit a phase transition and thus presents a simple bench-
mark for accuracy. Working with lattice gas models requires a simple transformation of the well-known exact solution, [5],
which for the Hamiltonian of the system given on the periodic lattice
HðrÞ ¼ �K
XN

x¼1

rðxÞrðxþ 1Þ þ h
XN

x¼1

rðxÞ;
yields the equilibrium mean coverage and the 2-point correlation function
�cðh;bÞ ¼ 1
2

1þ sinhðh0Þ
ðsinh2ðh0Þ þ e�4K 0 Þ1=2

 !
; ð60Þ

�kðx; yÞ ¼ 1
4
ð1þ e4K 0sinh2ðh0ÞÞ eK 0 coshðh0Þ � e�K 0 ð1þ e4K 0sinh2ðh0ÞÞ1=2

eK 0 coshðh0Þ þ e�K 0 ð1þ e4K 0sinh2ðh0ÞÞ1=2

" #ðx�yÞ

; y P x; ð61Þ
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where
Fig. 4.
one-dim
to the e
K 0 ¼ 1
4

bK; and h0 ¼ 1
2

bðh� KÞ: ð62Þ
Since the one-dimensional Ising model does not exhibit a phase transition it allows us to assess the accuracy of the approx-
imation for the phase diagram calculation. The phase diagram depicting dependence of the coverage on the external field for
different values of b is shown in Fig. 4(a). In this simulation a rather conservative Dt ¼ 1:0 was chosen. The statistical errors
(confidence intervals) are below the resolution of the graph. As seen in the figure the isotherms for the average equilibrium
coverage are thus obtained with a good accuracy. As a global observable the total coverage is less sensitive to statistical er-
rors therefore we also monitor the 2-point correlation function and its agreement with the exact solution (61). The results for
different values of b in Fig. 4(b) demonstrate good accuracy.

2D Ising model: The phase transition that occurs in two-dimensional Ising model presents a more challenging test case.
However, the celebrated exact solution due to Onsager for spins R ¼ f�1;1g, [30], in the case with the zero external field
and further refinements yield closed formulas for the mean coverage and two point correlation functions. We restrict our
tests to the isotropic case, i.e., on the two-dimensional periodic lattice we have the Hamiltonian
HðrÞ ¼ �K
X

x¼ðx1 ;x2Þ2KN

ðrðx1; x2Þrðx1; x2 þ 1Þ þ rðx1; x2Þrðx1 þ 1; x2ÞÞ þ h
X
x2KN

rðxÞ:
Transforming the exact solutions for the spins R ¼ f0;1gwe obtain the equivalent to the zero external field the value h ¼ 2K
at which value the critical inverse temperature solves sinhð12 bcKÞ ¼ 1. The exact solution for the mean coverage has the form
�cðbÞ ¼
1
2 ð1þ ½1� ðsinhð12 bKÞÞ�4�1=8Þ; b > bc;
1
2 ; b < bc:

(
ð63Þ
The exact solution for the 2-point correlation is available in [38], however, we use only the asymptotics in jx� yj, [5]. Intro-
ducing j ¼ ðsinhð12 bKÞÞ�2 we have
�kðx; yÞ ¼ ð1� j2Þ1=4 þOðjjx�yjÞ; b > bc;

Oðj�jx�yj=2Þ; b < bc:

(
ð64Þ
The phase diagram is computed at h ¼ 2 which for K ¼ 1 corresponds to the regime when the second-order phase tran-
sition occurs at the critical temperature sinhð12 KbcÞ ¼ 1. Sampling the coverage exhibits well-known difficulties close to the
critical point bc which are not cured by the fractional step algorithm. Instead, we demonstrate in Fig. 5(a) that for wide range
of choices Dt the phase diagram is constructed accurately for b outside a neighborhood of bc. Close to the critical point the
algorithm provides approximations that are in agreement with other Monte Carlo sampling approach. The finite-size effects
are pronounced at the neighborhood of the critical point due to algebraic decay of correlations. Thus it is not expected that a
good agreement with the infinite volume exact solution will be observed in the finite size simulations. Nonetheless, the pres-
ence of the second-order phase transition is indicated in the computed phase diagram. Furthermore, the proposed algorithm
provides an efficient implementation that allows for simulations on large lattice. It is shown in Fig. 5(b) that algebraic decay
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Fig. 5. (a) Comparison of the exact solution (63) (solid line) for the total coverage cbðK;hÞ, h ¼ 2, with mean coverage obtained in simulations on the one-
dimensional lattice with N ¼ 128 and various Dt’s. (b) Spatial two-point correlation function in the two-dimensional Ising model simulated on the lattice
N ¼ 5122 at a sub-critical temperature b > bc and supercritical regime b < bc . The simulation confirms the behavior obtained from the infinite volume exact
solution: at high temperatures the decay is exponential while at temperatures below the critical temperature the decay is algebraic. The dashed line
represents the fitted function of the form k�ae� k=n.
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of the 2-point correlation function is well approximated in the low-temperature (sub-critical) regime, while at super-critical
temperatures the exponential decay is observed. Overall, we note that such long-time sampling of the simulated CTMC is a
particularly challenging task since in principle, errors from any approximation may accumulate at long times and contam-
inate the simulation.

Studying approximation properties of the stochastic dynamics poses a more difficult task due to the lack of an exact
solution for the evolution of observables. Certain guidance can be obtained from mean-field approximations, however, those
do not give sufficiently good approximation for Ising model in low dimensions. Therefore we compare the evolution of the
coverage obtained from the traditional SSA algorithm with approximations generated by the proposed fractional time step
algorithm with different choices Dt. In Fig. 7(a) we compare the expected value and variance of the total coverage process
Ct ¼ 1

jKN j
P

KN
StðxÞ. Furthermore, it is also shown that the auto-correlation function for the process Ct is well-approximated

and approximations converge as Dt ! 0, see Figs. 6(b) and 7(b).
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7.1. Examples from catalysis and reaction engineering

In order to demonstrate the applicability of the proposed parallelization methodology in systems exhibiting complex spa-
tio-temporal morphologies at mesoscopic length scales, e.g., islands, spirals, rings, etc., we implement a KMC algorithm aris-
ing in the modeling of chemical reaction dynamics on a catalytic surface. Here we focus on CO oxidation, which is a
prototypical example for molecular-level reaction–diffusion mechanisms between adsorbates on a surface. We note that
molecular dynamics simulations have also been employed to understand micro-mechanisms on surfaces such as reaction
paths [31]. However, reaction kinetics for mesoscale adsorbate structures cannot be simulated by using molecular dynamics
because of spatio-temporal scale limitations of such methods, while KMC methods, have the ability to simulate much larger
scales [24].

In KMC models for CO oxidation on a catalytic surface spatial resolution is a critical ingredient of the modeling since in-
homogeneously adsorbed O and CO react on the catalytic surface only where the corresponding phases meet. Sophisticated
KMC models for CO oxidation on catalytic surfaces, where kinetic parameters are estimated by ab initio density functional
theory (DFT), [17], were recently developed in [32] and later in [28,22]. Such KMC models yield a remarkable agreement with
experiments, see also the review articles [27,8].

Next we demonstrate the performance of parallel fractional step algorithms for KMC simulation to heterogeneous catal-
ysis. We implement a simplified CO oxidation model known as the Ziff–Gulari–Barshad (ZGB) model, [40], which was one of
the first attempts towards a spatially distributed KMC modeling in reaction systems. Although a simplified model compared
to the ab initio KMC models described earlier, it incorporates the basic mechanisms for the dynamics of adsorbate structures
during CO oxidation on catalytic surfaces: single site updates (adsorption/desorption) and multi-site updates (specifically,
reactions with two sites being involved). The spins take values rðxÞ ¼ 0 denoting a vacant site x 2 KN , rðxÞ ¼ �1 for a mol-
ecule CO at x, and rðxÞ ¼ 1 representing a O2 molecule. Depending on the local configurations of the nearest neighbors in
Rx ¼ fy j jy� xj ¼ 1g the events in Table 1 are executed. The rates of individual events depend on the states in Xx which
are enumerated by x ¼ f1;2;3;4g and are summarized in Table 1.
Table 1
An Event in Xx , xnn 2 Xx is a randomly selected site from the nearest-neighbor set of x, and r2ðxÞ ¼ 1

4 ð1� rðxÞ2Þmx
0, r3ðxÞ ¼ 1

8 rðxÞð1þ rðxÞÞmx
�1,

r4ðxÞ ¼ 1
8 rðxÞðrðxÞ � 1Þmx

1, where mx
k is the number of nearest neighbors (nn) of x that are equal to k.

x Site rðxÞ rx Rate cðx;x; rÞ Comment

1 Vacant 0 0! 1 k1ð1� ðrðxÞÞ2Þ CO adsorb

2 Vacant 0 0! �1 ð1� k1Þr2ðxÞ O2 adsorb
0! �1, xnn

3 CO 1 1! 0 k2r3ðxÞ COþ O and desorb
�1! 0, xnn

4 O �1 �1! 0 k2r4ðxÞ COþ O and desorb
1! 0, xnn



Fig. 8. Snapshot at different simulation times for the CO oxidation process, on a two-dimensional lattice N ¼ 10242.
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The execution times for lattices of different sizes are compared in Fig. 2, while a snapshot of the spatial morphology is
depicted in Fig. 8. In Fig. 9 the evolution of the mean coverage of the species is presented as a function of time. Here we take
as a reference the sequential KMC-BKL kernel. The same kernel is then used for the implementation on GPUs where we com-
pare times for different choices of Dt. We remark that the KMC kernel is not optimized by techniques such as the BKL algo-
rithm, [20], which is manifested in the scaling with respect to the size of the lattice N. However, the same kernel is used in the
fractional step algorithm thus we present fair comparisons between serial and parallel solvers, noting that any optimized
serial KMC algorithm can be used as a kernel in our fractional step framework. It is worth noting that by partitioning of
the problem into the subproblems the OðN2Þ complexity of the simple implementation for the SSA algorithm is reduced,
which is also demonstrated in Fig. 2 where the slope of lines for simulations using GPUs suggest the reduced complexity
of order OðNÞ. Hence the proposed approach also offers a simple but efficient implementation of KMC simulators.

Finally, in our implementation (as well as in the original ZGB model) we did not implement the fast diffusion mechanism
of O adsorbates on the surface, [22]. However, the scheme (25) can allow us to easily implement within our parallelization
framework schemes with disparate time-scales which turn out to be important for the long-time adsorbate dynamics.
8. Conclusions

In this paper we proposed a new framework for constructing parallel algorithms for lattice KMC simulations. Our ap-
proach relies on a spatial decomposition of the Markov generator underlying the KMC algorithm, into a hierarchy of oper-
ators corresponding to processors’ structure in the parallel architecture. Based on this operator decomposition, we can
formulate fractional step approximation schemes by employing the Trotter product formula; these schemes allow us to
run independently on each processor a serial KMC simulation on each fractional time-step window. Furthermore, the
schemes incorporate the communication schedule between processors through the sequential application of the operators
in the decomposition, as well as the time step employed in the particular fractional step scheme. Here we discussed deter-
ministic schedules resulting from Lie- and Strang-type fractional step schemes, as well as random schedules derived by the
Random Trotter Theorem, [19]. We demonstrated that the latter category includes the algorithm [35] as one particular
example.

Some of the key features of the proposed framework and possible future directions include: The hierarchical structure can
be easily derived and implemented for very general physiochemical processes modeled by lattice systems, allowing users to
input as the KMC kernel their preferred serial algorithm. This flexibility and hierarchical structure allow for tailoring our
framework to particular parallel architectures with complex memory and processor hierarchies, e.g., clusters of GPUs com-
municating, for instance, through an MPI protocol, and using the nested generator decomposition (56). Moreover, multi-
scale Trotter algorithms for systems with fast and slow processes are widely used in molecular dynamics, e.g., [13], and they
can be recast along with the proposed methods into a spatio-temporal hierarchy of operators that allow computational tasks
to be hierarchically decomposed in space/time. The numerical consistency of the proposed algorithms is rigorously justified
by Trotter Theorems, [37,19] showing the convergence of our approximating schemes to the original serial KMC algorithm.
Related numerical estimates are expected to provide insights on the design and the relative advantages of various commu-
nication schedules and architectures. We discussed work load balancing between processors through a re-balancing scheme
based on probabilistic mass transport methods that is particularly well-suited for the proposed fractional step KMC methods.
We carried out detailed benchmarking using analytically available exact solutions from statistical mechanics and applied the
method to simulate complex spatially distributed molecular systems, such as reaction–diffusion processes on catalytic sur-
faces. Finally, we studied the performance and scalability of our algorithm (56) and the resulting code for different lattice
sizes and types of GPUs.

Concluding we note that there are some interesting conceptual analogies between the parallelization and coarse-graining
algorithms of KMC such as the coarse-grained Monte Carlo (CGMC) method e.g., [15,2]. In both methods we decompose the
particle system in components communicating minimally, e.g., (10) and (21) or trivially as in coarse-graining methods, thus,
local information is represented by collective (coarse) variables, or computed on separate processors within a parallel archi-
tecture. An early work towards parallelizing CGMC [15] in problems with locally well-mixed particle interactions is [39],
while further progress towards understanding and exploiting the analogies and the complementarity of CGMC and parallel
KMC has the potential to give efficient KMC algorithms capable of simulating complex systems at mesoscopic length scales.
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